

林 竜吾<sup>1)</sup>, 齋藤 旭<sup>1)</sup>, 小泉 直也<sup>1)</sup> Ryugo HAYASHI, Asahi SAITO, and Naoya KOIZUMI

1) 電気通信大学(〒182-8585 東京都調布市調布ヶ丘 1-5-1, hayashi, asahi@media.lab.uec.ac.jp, koizumi.naoya@uec.ac.jp)

概要: 本研究では、空中像を観察する視点と空中像に対する迷光の位置・変形の関係を調査し、ゲーム エンジン内でそれを再現した。再帰透過光学素子を用いた空中像装置で発生する迷光の位置・変形の把 握を目的として、空中像と迷光のアフィン変換行列をシミュレーションデータから求めた。得られた変 換行列を用いてゲームエンジンで迷光と空中像を描画し、実物と比較してこの妥当性を確認した。 キーワード: 空中像光学素子,迷光,CG

# 1. はじめに

再帰透過光学素子は光源からの光を光学素子に対して面 対称な位置に結像させる光学素子である。再帰透過光学素 子はその特性から、主に空中像を生成するために用いられ る。再帰透過光学素子は、結像する空中像が再帰性反射材を 用いた空中像よりボケが少ないという利点や、他の光学素 子と組み合わせずに空中像を生成できるという利点がある。

再帰透過光学素子の主な課題として、迷光を生じてしま うことが挙げられる(図1)。迷光は空中像付近に発生し、 空中像と重なる場合がある。このとき迷光はユーザーの空 中像への観察や集中を妨げてしまう。そのため、ユーザー が空中像に集中できるように装置を設計するためには、迷 光の位置・変形の把握が重要である。迷光の位置・変形の 把握のためには、空中像装置を何度も検討し組み立てたり、 複雑な計算を行ったりする必要がある。これらの作業には 多くの労力を要するため、困難である。そこで、迷光がど のような位置にどのような形で発生するかをあらかじめ把 握することができれば、空中像装置の設計時に迷光を考慮 することができ、ユーザーが空中像に集中できる装置の検 討が可能となる。

我々は空中像体験のプロトタイプをする手法として、ゲー ムエンジンを用いて空中像光学素子を再現し、VR 空間内で 空中像体験を設計することを提案する。まず本稿では一般 的なゲームエンジンを用いて迷光の位置・変形をシミュレー ションし、実際の再帰透過光学素子をにより生じる迷光と 比較することとした。

## 2. 関連研究

#### 2.1 再帰透過光学素子

再帰透過光学素子には Micro Mirror Array Plates (MMAP) や Dihedral Corner Reflector Array (DCRA)[1]、Radially arranged DCRA[5] が挙げられる。本稿では後述するシミュ レーションを用いるため MMAP を対象とした。



## 図 1: MMAP を用いた光学系で迷光が生じている様子

MMAPは、細い鏡が並べられた Slit Mirror Array (SMA) の構造になっている層が直交するように重ねられた光学素 子である。MMAP 内で 2 回反射した光が MMAP に対し て面対称な位置に結像する。このとき光は 2 つの SMA で 奇数回ずつ反射する。

再帰透過光学素子を用いた空中像装置では迷光が生じる。 2 つの SMA のどちらかまたは両方で偶数回反射した光が迷 光となる。迷光の位置や形は視点や光源の位置関係、光源 の発する光の特性によって変化する。

## 2.2 シミュレーション

空中像と迷光のシミュレーションとして、いくつかの手 法が提案されている。

MMAP における空中像や迷光の位置をヒートマップで表 現した例がある [2]。この手法では、ヒートマップで表現す ることで空中像や迷光の位置を調査している。しかし、空 中像や迷光がユーザーからどのように見えるかはこのシミュ レーションから再現できない。

Kiuchi ら [3] はレイトレーシング法を用いた MMAP の シミュレーション手法を提案している。レイトレーシング 法は光線を追跡することでレンダリングを行う方法である。 この手法では、MMAP を正確にモデリングし、物理現象に 従って光線を追跡することで、空中像や迷光の見え方を現 実と同様に再現できる。また、Kiuchi らは迷光の形が空中 像を平行移動およびせん断した形であることを確認し、こ れらの両方が行えるアフィン変換で迷光の変形を計算でき るはずだと説明している。

星ら [4] はレイトレーシング法を用いた MMAP のシミュ レーションと画像処理を組み合わせて、空中像が迷光なし に観察できる範囲を調査している。迷光を生成する光と空 中像を生成する光の、MMAP 内での反射回数が異なる点に 注目している。反射回数ごとに光線を分けてレンダリング し、差分を取ることで迷光を自動で検出する手法を提案し ている。

しかし、これらの手法にはリアルタイムな描画が難しい、 迷光の変形のシミュレーションが困難といった課題がある。 CG 環境で空中像とのインタラクションを行うためにはリア ルタイムな視点移動に対応して迷光の位置・変形が再現で きなければならない。また、CG 環境で現実と同様に空中像 装置を検証するには、現実と同様の見え方で迷光を再現す る必要がある。レイトレーシング法を用いたシミュレーショ ンは、現実と同様に迷光の位置・変形が再現できる一方、計 算量が多くレンダリングに時間がかかる。そのため、視点 移動に対してリアルタイムに対応したシミュレーションを 行うことが難しい。

本稿ではアフィン変換行列を用いて迷光の位置・変形を再 現し、VR 空間内で空中像体験を設計することを提案する。 変換行列を用いて迷光の位置・変形を計算することで、迷 光の位置・変形の見え方をリアルタイムに再現し、CG 環境 でインタラクション可能なシミュレーションを可能にする。

#### 3. 提案手法

レイトレーシング法による従来のシミュレーション手法 を用いて、迷光の位置・変形を計測した。計測結果から迷光 の位置・変形の式を定めた。また、Unity で提案手法を実装 した。

#### **3.1** 迷光の描画方針

本稿では迷光の空中像に対する変形を計測し、アフィン 変換を用いることで迷光の位置・変形を再現する。迷光の 描画方法として、上下の迷光の各頂点の三次元座標と形状 を全て測定し同様な形状のオブジェクトを配置する方法や、 迷光の空中像に対する変形を計測しシェーダーで変換行列 を用いる方法が挙げられる。迷光の各頂点の三次元座標や 形状をすべて計測するのには多くの労力を要する。そのた め、変換行列を用いることにする。

迷光の位置・変形をシミュレーションするために Unity 2020.3.28f で作成する光学系を図 2 に示す。MMAP に対し て Display と面対称な位置に空中像が結像する。実際は空中 像の位置にはオブジェクトを配置しない。Virtual Camera の Display に対する位置・向きが、視点の空中像に対する位 置・向きと合同になるように Virtual Camera を配置する。 これにより、Virtual Camera の出力は視点からの空中像の 見え方を撮影しているのと同様になる。また、MMAP と同 じ位置に空中像や迷光を表現するための Quad を配置する。



図 2: Unity での構成



図 3: MMAP 部分: (a) 構成; (b) 視域

図2の配置では図1のように、空中像の右上と右下に迷 光が生じる。このとき、右上に生じる迷光を上の迷光、右 下に生じる迷光を下の迷光と呼ぶことにした。上の迷光と 下の迷光では空中像に対する変形が異なるため、それぞれ 異なる行列を用いる。

MMAPは、上の迷光を表示する部分、下の迷光を表示す る部分、空中像を表示する部分、SMAとガラスの部分に分 けて再現する。上下の迷光を表示する部分と空中像を表示 する部分はそれぞれ Quadを用いる。SMAとガラスの部分 は Cubeを板状に配置して表現する。

Virtual Camera の出力になっているレンダーテクスチャ をシェーダーでアフィン変換し、Quad のテクスチャにする ことで空中像および迷光の位置・変形を再現する。空中像と 上の迷光、下の迷光はそれぞれ異なるシェーダーを用いて 描画する。空中像はレンダーテクスチャをそのまま用いて 表現する。上の迷光と下の迷光はそれぞれ異なる変換行列 によりアフィン変換を行うことで位置・変形を表現する。空 中像・迷光が正しい向きで観察できるようにレンダーテクス チャを貼り付ける Quad の法線が視点方向を向くようにす る。迷光を表現する Quad は MMAP を表現する Cube の 1.2 倍の大きさにする。

空中像や迷光などが描画されない範囲は透明になるよう に、シェーダーでクロマキーを実装する。Unity のレイヤー 機能を用いて Virtual Camera は Display のみを撮影する ように設定する。また、Virtual Camera の背景は任意の単 色に設定する。空中像と上下の迷光を描画するシェーダー において Virtual Camera の背景に用いた色でクロマキー を行うようにすることで、Quad の空中像や迷光以外の部 分は透明になるようにする。Virtual Camera の画角は視点 と MMAP の距離を d として、 $2 \arctan(48.8 \times 1.2/2d)$  に 設定した。

MMAP の表面にマスクをかけ、視点から見てマスクと重 なっている領域だけ空中像と迷光を描画するようにシェー ダーを作成することで視域を再現する。現実の空中像装置に おいて、空中像や迷光は視点と MMAP の間にのみ生成さ れる。この視域の制限を再現するために、MMAP の表面に マスクとなる Quad を配置する。視点から見て空中像や迷 光のマスクと重なる部分だけが描画されるようにシェーダー を設定する。これにより現実と同様の視域が再現できる。

## 3.2 迷光の計測

Blender 内で MMAP と光源を配置し視点となるカメラの 位置を変化させ、各条件でレンダリングを行った。Blender 3.0を利用し、MMAP には Kiuchi ら [3] が作成した MMAP のモデルを用いた。レンダリングには Blender に組み込まれ ている Cycles を用いた。このモデルによるシミュレーショ ンでは空中像・迷光の位置や形が実際の光学系と同様に観 察できる。実際の光学系での計測と比べて、このモデルに よるシミュレーションを用いた計測は、光学系のパラメー タの変更や細かい間隔での計測が容易である、計測誤差が 少なくなる、といった利点がある。

計測の概要を図4に示す。現実での1 cm を Blender で の距離1とした。MMAP は高さおよび幅を $H_m = 97.6$  cm とした。その他のピッチ幅などの MMAP のパラメータは デフォルトの設定のままにした。MMAP-光源間距離 L<sub>d</sub> は 15 cm とした。光源は拡散稿を出射する半径 0.75 cm の円 盤で、円の中心間距離が8 cm となるように同一平面上に 正方形に配置した。このとき、4つの円盤を含む平面が YZ 平面に平行になるように配置した。カメラは空中像から距 離 150 cm かつ、XZ 平面に平行な平面上を移動させた。カ メラが移動する平面の、空中像の正面を原点として、z = 0 の条件で x 座標 -90 cm から 90 cm まで 2 cm ごとに 91 点、x=0 の条件で z 座標 -90 cm から 90 cm まで 2cm ごとに 91 点、以上の 2 条件で計 182 点の視点からレンダ リングを行った。この範囲は、空中像に対する視線の方位 角および仰角の、約 -0.54 rad-約 0.54 rad の範囲に相当 する。レンダリング時に、カメラは空中像として結像され る4つの円からなる正方形の中心を常に向くように設定し た。MMAP とカメラの距離を d として、カメラの画角は  $2 \arctan(48.8 \times 1.2/2d)$ としてレンダリングした。

各条件において視点-空中像間の距離が一定でない。しか し、視点-空中像間の距離は迷光の位置・変形に影響しないた め、これらは方位角および仰角方向の視点移動とみなせる。 各条件でレンダリングした画像から空中像に対する迷光 の位置・変形を2×3のアフィン変換の変換行列として計



図 4: 測定概要図: (a) 俯瞰して見た様子; (b) 横から見た 様子

測した。OpenCV の connectedComponentsWithStats 関 数を用いて空中像および迷光となった 4 つの円形の像の重 心を求めた。空中像・迷光の 4 つある重心位置のうち 3 つ を用いて、getAffineTransform 関数で空中像に対する迷光 の変形をアフィン変換の変換行列として求めた。これらの 操作を上の迷光と下の迷光のそれぞれについて行った。

# 3.3 変換行列の定式化

計測した変換行列から迷光の位置・変形の式を定めた。視 点の移動に対する上の迷光の変換行列の変化を行列の要素 ごとに観察し、曲線のフィッティングを行った。 $2 \times 3$ のア フィン変換行列のうち、i行j列目の要素を要素3(i-1)+jと定めた。

z = 0 の条件で x 座標 –90 cm から 90 cm でレンダリン グしたそれぞれの画像から得た、各視点における変換行列 の 6 つの各要素について、縦軸を要素の値、横軸を空中像 に向けた視線の方位角としてグラフにプロットした。

プロットした点に対して曲線をフィッティングすること で、変換行列の要素ごとに方位角  $\theta$  方向の視点移動に対す る値の変化の式  $f(\theta)$  を求めた。要素 n の式を  $f_n(\theta)$  とする と、各要素の式は以下のように求められた。

 $f_1(\theta) = 0.2053\theta^2 - 0.2499\theta + 0.5505 \tag{1}$ 

 $f_2(\theta) = -0.0142\theta^2 + 0.0022\theta + 0.0314 \tag{2}$ 

 $f_3(\theta) = -387.8775\theta^2 + 483.2539\theta + 720.035$ (3)

$$f_4(\theta) = 2.1485\theta^3 + 1.9065\theta^2 + 1.1994\theta + 0.6674 \quad (4)$$

 $f_5(\theta) = 0.016\theta^2 + 0.0154\theta + 0.9777 \tag{5}$ 

 $f_6(\theta) = -3148.12\theta^3 - 2926.41\theta^2 - 2058.05\theta - 1080.5 \quad (6)$ 

アフィン変換行列の各要素の値について、グラフにプロッ トし上記の曲線をフィッティングした結果を図5に示す。方 位角方向の視点移動における x 座標 -90 cm から -88cm、 -42 cm から -32cm、62 cm から 90 cm の範囲のレンダリ ング結果では、getAffineTransform 関数に必要な数の頂点 座標が計測できなかった。また、仰角方向の視点移動につ いて、上の迷光については z 座標 74 cm から 90cm、下の 迷光については -90 cm から -74 cm の範囲のレンダリン グ結果で、getAffineTransform 関数に必要な数の頂点座標



図 5: アフィン変換行列の各要素の値の変化: (a) 要素 1; (b) 要素 2; (c) 要素 3; (d) 要素 4; (e) 要素 5; (f) 要素 6

が計測できなかった。そのため、これらの範囲はプロット から除いた。

x=0 の条件で z 座標 90 cm から 90 cm でレンダリング した各画像についても同様の操作を行った。仰角方向の視 点移動についても式が求められた。また、下の迷光につい ても同様の操作を行い、方位角方向および仰角方向の視点 移動に対する値の変化の式を求めた。

求めた空中像に対する方位角方向の視点移動に関する式  $f(\theta)$  と仰角方向の視点移動に関する式  $g(\phi)$  を組み合わせ て、空中像に対する任意の視点位置  $(\theta,\phi)$  に対するアフィン 変換行列の各要素の値  $h(\theta,\phi)$  を以下の式に定めて実装した。

$$h(\theta,\phi) = f(0)\frac{f(\theta)}{f(0)}\frac{g(\phi)}{g(0)} \tag{7}$$

## 4. 結果

定めた各要素の式を用いて、迷光の位置・変形を Unity で実装した。Unity でシミュレーションした結果と実機での 空中像・迷光の観察結果を比較した。迷光が観察できる条 件と、迷光が隠されて空中像のみが観察できる条件で撮影 した。計4通りの条件で比較した。結果を図6に示す。

## 5. 考察

アフィン変換行列の各要素のフィッティングには改善の余 地がある。提案手法では計測した結果から曲線を求めてい る。そのため、空中像の飛び出し距離 *L*<sub>d</sub> が変化した際の曲 線の変化が推測できない。空中像や迷光の結像の原理から 曲線を求めることで、より正確で様々な条件に対応した曲 線のフィッティングが行えると考えられる。

今後の展望として、空中像の飛び出し距離の変化に対す



図 6: Unity と実機の比較: (a) 実機で迷光が観察できる 条件;(b) 実機で迷光が隠された条件;(c)Unity で迷光が観 察できる条件;(d)Unity で迷光が隠された条件

る迷光の位置・変形の再現が挙げられる。本稿では空中像の飛び出し距離 L<sub>d</sub> を 15 cm に固定して考えたが、実際の空中像装置では L<sub>d</sub> が変化すると迷光の位置・変形も変化することが知られている。L<sub>d</sub> の変化にも対応した式を定めることで、より汎用性の高いシミュレーションが行える。

# 6. むすび

本論文ではゲームエンジンを用いて空中像光学素子を再 現し、VR 空間内で空中像体験を設計することを提案した。 空中像に対する迷光の位置・変形をアフィン変換の変換行 列で計測し、視点移動に対する変換行列の各要素の変化の 式を定めることで、リアルタイムにインタラクション可能 なシミュレーションを可能にした。

謝辞 本研究は、JST 創発的研究支援事業 JPMJFR216L の 支援を受けたものです。

## 参考文献

- Satoshi Maekawa, et al.: Transmissive optical imaging device with micromirror array, Three-Dimensional TV, Video, and Display V, Vol. 6392, pp. 130–137, 2006.
- [2] 山本裕紹他:"空中ディスプレイの開発と応用展開",シー エムシー出版, pp. 35–45, 2018.
- [3] Shunji Kiuchi, et al.: Simulating the appearance of mid-air imaging with micro-mirror array plates, Computers & Graphics, Vol. 96, pp. 14–23, 2021.
- [4] Ayami Hoshi, et al.: Design a midair image system without stray light, The 25th Annual Conference of the Virtual Reality Society of Japan, 2B3-1, 2020.
- [5] Yuta Yoshimizu et al.: Radially arranged dihedral corner reflector array for wide viewing angle of floating image without virtual image, Optics Express 27, pp. 918–927, 2019.