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Figure 1: Overview of the proposed method.
Abstract public installations and interactive displays. Among various tech-

This paper presents a differentiable rendering framework for con-
structing accurate retroreflective models used in mid-air image
simulation. Simulating mid-air images requires precise reproduc-
tion of luminance and blur characteristics that vary with viewing
angle and floating distance. Our method estimates optical parame-
ters directly from photographs of mid-air images, enabling accurate
reproduction of these effects without physical prototyping. Exper-
imental results show that our model reproduces mid-air images
similar to real photographs, achieving higher similarity to real
photographs than conventional models according to LPIPS metric.
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1 Introduction
Mid-air imaging displays visible images directly in space without
screens or head-mounted displays, enabling new applications in
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niques, Aerial Imaging by Retro-Reflection (AIRR) [Yamamoto et al.
2014] achieves wide viewing angles and scalability using corner-
cube retroreflectors and half mirrors. However, the blur and lu-
minance attenuation of AIRR images cannot be fully predicted
without assembling the optical system, highlighting the need for a
simulation-based approach to estimate these effects in advance.

This study proposes a differentiable rendering framework to
estimate retroreflector parameters from photographs of mid-air
images. This approach enables designers to predict the appearance
of large-scale mid-air images, such as those used on stage installa-
tions, to pre-evaluate visibility for applications like signage, and to
design complex optical configurations for biological experiments
before physical implementation.

2 Related work

Simulating mid-air images in computer graphics (CG) enables opti-
cal system design without physical prototyping [Kiuchi and Koizumi
2021], [Hoshi et al. 2022]. Previous AIRR studies modeled retrore-
flection via geometric optics, Guo et al. [Guo et al. 2018] proposed
a BRDF for corner-cube arrays, and Saito et al. [Saito et al. 2024]
introduced a microfacet model; however, both lacked precise blur
reproduction. Differentiable rendering [Jakob et al. 2022; Vicini
et al. 2021] offers a promising way to estimate such parameters
efficiently, which motivates our approach. We modeled the AIRR
retroreflector following Kakinuma et al. [Kakinuma et al. 2021],
who identified diffraction and ray shifts in the corner-cube array
as the main causes of luminance loss and blur.
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3 Method

We developed a retroreflective model that integrates diffraction-
based blur and ray-shift simulation. The squared sinc function de-
scribes the intensity distribution of diffracted light, the reflectance

model is as follows
F(01,00) = ysinz(aR tan(6, — 9,-)),
(aRtan(6, — 0;))2
where p denotes reflectance, a the diffraction spread, and R the
floating distance. Ray-shift distributions were precomputed using
Mitsuba 3 [Jakob et al. 2022] and stored in lookup tables.

Ray shifts were simulated using Mitsuba 3 [Jakob et al. 2022]
with a physically accurate corner-cube geometry. Rays incident at
varying angles were traced through the three reflective faces, and
their exit-point deviations were recorded to form a probabilistic
shift distribution. These distributions, parameterized by the incident
angle, were stored in a lookup tables and used during rendering to
perturb outgoing rays. The corner-cube edge length was normalized
to unity, allowing the shift to be scaled later by the corner size c.

Parameter estimation uses differentiable rendering to minimize
differences between real and simulated mid-air images. First, param-
eters a (Eq. (1)) and ¢ (ray shift) are jointly estimated following the
flow in Fig. 1. After initialization, a CG mid-air image is rendered
with an edge image as the light source, and its MTF is calculated.
Once geometric parameters are fixed, reflectance y is optimized to
match the luminance ratio between the source and mid-air image.

Loss functions are based on mean-squared error for MTF and
luminance ratio differences. Optimization typically converges in
fewer than 200 iterations. For efficiency, simulations were executed
at a resolution of 512x512 pixels with 256 samples per pixel. The
differentiable rendering loop was parallelized across incident angles
(0°-45° in 5° increments).

The physical setup for image capture used a white LED light
source with an integrating sphere (Labsphere 3P-GPS-040-SF), a
half mirror and two retroreflectors (RF-Ay, RF-AN). Images were
captured using a camera (Sony a7R V) equipped with a 24-105 mm
F4 lens, at ISO 100, /4.0, and 1/13 s exposure. The same geometry
and illumination parameters were reproduced in CG for validation,
ensuring consistent brightness and blur measurement between real
and simulated conditions.

)

4 Evaluation

We compared simulated and real mid-air images under various
distances and incident angles.

The proposed model preserved fine edge contrast and reduced
over-blurring around bright regions. These results confirm that
the differentiable optimization successfully adjusted diffraction and
ray-shift parameters to match real optical behavior, demonstrating
the practicality of the approach for AIRR design.

LPIPS [Zhang et al. 2018] was used as an image similarity met-
ric. As listed in Table 1, the LPIPS values obtained with our model
were lower than those of Saito et al’s model. A lower LPIPS value
indicates a higher similarity to the real mid-air image, suggesting,
greater simulation accuracy. LPIPS improved from 0.39 to 0.31 on av-
erage for RF-Ay and from 0.37 to 0.29 for RF-AN. This improvement
corresponds to a perceptual similarity increase of approximately
20%.
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Table 1: LPIPS comparison between the proposed and conven-
tional models for RF-Ay and RF-AN retroreflectors. Lower
values indicate higher similarity to real mid-air images.

Retroreflector Distance ~ Method Image1l Image2 Image3

RF-Ay 150 mm  Proposed 0.319 0.284 0.331

Saito etal.  0.400 0.353 0.403

300 mm  Proposed 0.333 0.296 0.349

Saito etal.  0.398 0.341 0.450

RF-AN 150 mm  Proposed 0.311 0.263 0.300

Saito et al. 0.379 0.351 0.385

300 mm  Proposed 0.325 0.277 0.314

Saito et al. 0.377 0.324 0.395
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Figure 2: Example renderings for RF-Ay at floating distances
of 150 mm and 300 mm.

Figure 2 shows representative renderings under RF-Ay and RF-
AN conditions at floating distances of 150 mm and 300 mm. In
Saito et al’s model, the simulated blur increased excessively with
distance, while our model reproduced the real image sharpness
transition more accurately.

5 Conclusion

Our method enables accurate, data-driven modeling of retroreflec-
tive elements using only photographs. It eliminates the need for
specialized measurement setups, broadening access to high-fidelity
AIRR simulation for optical designers and content creators. Future
work includes extending the model to account for anisotropy and
microstructural variations.
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